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1. Introduction:

Stokas (1846) showed that a sloping beach can act as a wave
guide which allows gravity waves to travel along shore with an ampli-
tude decreasing exponentially with a distance from the shore. Since
then, several authors including Ursell (1952), Greenspan (1956) and
Munk and others (1956) discussed long or short gravity waves on a
sloping beach of a homogeneous water either from a mathematical point
of view or from application to geophysicel problems.

Kelvin (1879) treated a problem of long waves propagating
along a straight coast in a rotating sea and found that the amplitude
decreases exponentially from the coast to the left hand side of the
direction of propagation in the northern hcmisphere. Energy of such
waves which are called Kelvin waves, therefore, is seemingly trapped
by the coast.

The edge waves over a sloping beach in a rotating sea of
homogeneous water was treated by Reid (1958) and Kajiura (1958). They
showed that in this system there are two inertio-gravitational waves
travalling in opposite directions and one quasi-geostrophic wave.

However, density stratification of the water as well as a
beach slope becomes important for problems concerning response of the
marginal sea to atmospheric disturbances and for problems concerning
internal waves nesr the coast. In order to represent such stratifica-
tion in a way which is feasible to mathematical treatment and yet,
keeps essential dynamical feature of the system, a two-layer model of
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the thermocline, consisting of two fluids of different densities is
adopted. Deviation of modes of wave motion in a two-layer model from
those in a continuous density was discusgsed by Eckert (1960) in a more
or less general way.

Egsential features of motion near the coast with a length
scale of the width of a continental shelf and with ime scales longer
than a few hours can be represented by a mathematical model for waves
in a two-layered, rotating sea bounded by a straight coast and with
a variable depth. There are two types of bottom topography which
renders mathematical analysis feasible and yet simulates an area close
to the continent.

One type is a continental shelf with a uniform or variable
depth connecting with the open sea with a uniform depth as treated by
Ichiye (1963). The other type of simple bottom topography is a depth
increasing linearly from the coast. In a two-layered sea, there must
be longshore geostrophic currents due to pressure gradients if the
interface as well as the surface intersects the bottom at the coast.

This study has treated such a model mathematically. In
order to simplify the analysis, it is assumed that geostrophic currents
in the upper and lower layers have uniform velocities owing to the
surface elevation increasing linearly from the coast. Although such
an infinite uprise of the sea level seems to be unrealistic, the
waves considered have amplitudes significant only near the coast and
the simplified model may be justified if interpretation of mathema-
tical results is proper. Slopes of the surface and the interface are
assumed so small that the approximation of hydrostatic pressure is
valid as shown by Eckart (1951).



2. PFundamental Equations:

The x- and y~ axes are taken on the level surface perpendi-
cular and parallel to the coast-line, respectively, and the z-axis
is taken vertically downwards, as shown in Fig. 1.

.. --2"--91
!

Fig. 1 Schemetic diagrams of coordinate system (A) and a
vertical section (B).

It is assumed that densities of water in upper and lower
loyevs are uniform and their difference is small, The basic currents
are@ geostrophic and their velocities are constant in cach layer. The
waves are considered to be perturbations to such basic currents. The
non~lincar inertia terms are neglected with assumptions that the
wertical velocity and amplitudes of the waves are very small. The
vertically integrated, linearized equations of motion without dis-

turbing forces and equations of continuity are respectively as
follows:

. C(-FN) _op
o V= -Z8 = [MN -

H

where 7]’_ - { P &, for 4=

and 4} = f. (§, -5 m;fz(" ;z)
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In these equations suffices 1 and 2 correspond to the

quantities in the upper and lower layer, respectively; Hj, N 3 are
horizontal mass transports respectively along the x- and y- axss,
Vj- » the basic current assumed to be geostrophic, § s the density,
h 3 (=s jx) the thickness of the layer; § 1 and C; o are respectively
the depression of the surface and the interface from the equilibrium
levels,Af (= 32' $ 1) density difference, £ the Coriolis parameter,
£ the gravitational acceleration, and V horizontal gradient operator.

The assumption of geostrophic balance for the basic current
leads to '

V=V 4 24k ®
2

Assuming that horizontal mass transports and displacements
of the surface and the interface are proportiomnal to exp{i.(ky -0 t)}
the equntions of motions (1) becomes a system of linear equations for
:~.3 and Nj with constant coefficients. The solutions of "j and NJ
in o108 of are given by:

7
i fl (adl esty) o

and

N —fﬁ-*"*ﬁ’?i) , @
where L=f:|- and Gfsd'-—gz,

Substituting Mj and Nj into the equation of continuity (2), we can
get equations for & , and $a ¢

(o~ (& 225+ Fa5 =0



mde 1k, &“A’}§z+§,(m—f;,§)§.=° Q)

Tz  Af S5:§73
vhere A‘ = -j-z-—d"z , S; =d£i/dz

2
=t D= dz Zi' - 4 z]
Elimination of 3‘ 9 from equations (6) and (7) yields the equation
for g, :

(@"..a1D+b)§,=o, (®)
ere _fk B, G4
vh ~ oy ss,ga' ¥ Oz M 35,902 ®
- {202 l 0"¢A2 ao; A42
6—074'(7"@ 6S. H€+55‘, 559 ) 1
ard 5= al/f,.

The equation (8) can be separated into two independent
Laguerre differential equations:

(D-K)S) = (11)
or (D — K2)Z, = (12)

where Kz ( at r ) (13)

It is seen that ‘2 - 4b20 for small § .

In order that the solutions of equations (11) and (12)
may be finite both at the coast and at the infinite distance, the Kj
must equal to =-(n + 1)k, where n {8 an integer. These conditions
yield the relation between ; land ;‘ 2 and the frequency equation,
respectively:
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and (2714 )2_§i$:f_ & Wy + (2714—;)[‘.;5_&1 )Qz(a), +Wz)+

{ w:td;(/ wi)r S?.gij‘(,-w' J + 5;:‘2 _ﬁz
(15a)
+%£ Wz (/~w3)+ %&w'(' ~’) + Wz (1- WP X 1-Wi )= 0

The frequency equation (15a) can be reduced into
[%?;ﬁ SN 1} ra0-w? )] [“Eg R § (21+t0z2 +13 +wp(i- w3 ]

(15b)
= (1= )W wa(1-2 X1 -Ww3)

In these equations following notations are used:

CU:-O—:, 0" 'CU"' ﬁV w-ﬁ/
and A+ ’ f ¥
a'.
7 ../.. 7 = /-w/.".

The equation (15b) can be written in the polynomial about w. The

coefticients of different powers of w are shown in the following

Table 1, in which the dimensionless quantities, & ﬁ and rare
ﬁ;' - ‘V‘--_&'- wnd X - iﬁl

defined by £ -
= E : 3,
Equation (3) yields (e YR ____(V;__Vz)&{.“___ 35 (S'.f%.)g.‘;-‘

Therefore (i+¢) ﬁ’ is always positive, no matter in what
dixection the current in upper and lower layers flow. Values of
fox different values of Vl and wave length are shown in Table 1I,
fox £ o 107 (sec”.



Table I Frequency Equations ‘

Ot Coefficrients

wel

W -3 -8)k

WH| 3(1-25+ 8Hh 22 (2nr/)(/-rf)é-xﬁ' -2
w3

~C-EX1-45+s)E 3+ rzuﬂxns)g-f( -0rr-1)10-2) K *+
T 30-8) ~areyh vy R

~30r- 35 +82 )R ¥ 30em 1008 )L (V-1 -35 452 ) B+
+ ()L L § o Yene)-1) + 3(r-1-€ 3R +(zm.xfrz)3i-m + )

~3e%-£)R -(zrm)(#s) JOv-iX36-1) + £%e-3)} R ¥ -

"/H‘i) L(2#rX1-E2 X¥-1) + 3(&* x-l)}ﬁ’-rz(:m')'ﬂz)‘(&l)-’-ﬂ +
+(»r5)5~r;@

-¢ 372" 1 (2041 X/rz)g'-t(/ff’ )b'f

’3
- (nru‘(/ﬁ)”g(x-/}éL,@’ £ tannxpe );.L{ (1-€°X¥-1) r&V} A+
+ e YR

Table II Nondimensional wave number '& Vi /% corresponding

to a given waze length L (km) and velocity V (m/ sec),
whnre f = 10"%sec"

A

10 50 100 500 1000 5000 #&m

0.8"
0.5
0.2
0.1

6.283 1.257 0.628 0.126 0.063 0.013
5.026 1.066 0.503 0.101 0.050 0.010
3,142 0.628 0.314 0.063 0.031 0.006
1.257 0.251 0.126 0.025 0.013 0.003

0,628 0.126 0,063 0,013 0,006 0,001




3. The waves for n = 0
When n » 0, the polynomial (15b) can be factorized as follows

(- I X w+ER+1)x
[ftw-&Xw-R"+1) ~ ()R I§(wreR Y w+ER=1) T X¥-DKY
+ (-8 Xw-RKXw+e K’Xco-&'ﬂﬁw-iﬁ'—o)](u)

It is seen at once that equation (16) has two roots:

w=R"—| (17)
w=-sR-| (18)

The root (17) or (18) makes the denominator F 2—-0‘; in equations (4)

and (5) vanish for j = 1 or 2, respectively. Therefore, equations
{4) and (5) yield 77' " e-»‘z

in which the suffix j equals to 1 or 2, corresponding to the root
(17) or (18), respectively.
Substituting 7[,‘ into either (6) or (7), it is found that

é, and 5’2 are proportional to e’kz « The mass transport
M, or M, respectively for the root (17) or (18) can be derived from
one of equations of motion (1) and equations of continuity (2).
The boundary condition that M i thus determined should vanish at
the coast and be finite at an infinite distance leads to a relation
waich determines the values of k.

Cne such corresponding to the root (17) is given by

35597 R +Feo,i-waygs k + 2555w, b +254 w, Wi -ws ) (19)
=0
Since w; = -1 and w, is linear with k, equation (19) is a cubic
equation about k. This equation yields the roots when § is very
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2f2
R~ sy T 00 (208)

55150 ’ (200)

205 t6)°, /L
ad R ~-é;7§—)§;2f +off). (200)

Relation (20a) is equal to 2f73(5.+$:) vhen
§®0andV, =V, =0, as obtained by Reid (1958).

The waves corresponds to the roots (17) and (18) are degen-
erate cases of other mocdes of waves as in case of a uniform density.
Since these waves are possible only for discrete wave numbers, they
cannot be excited by local atmospheric disturbances of arbitrary
dimensions.

Other four roots of w in equation (16) are determined from
the following biquadratic equation with w:

w4 - 210~ 1} wi- F2ER 4 (e VSR -30-8)R - 1} @*

+{-202-0R L (s 48+ DR *+ 20X T-1-2)67R L -2)R "+
+ (SR Fw + {E2B 4 s(s-0DR > crrexa-1+£987R 3

~ER* +(roE¥STR'? =0

. (22)
As seen from Table II, ﬁ'« 8” for the wave lengths longer
than several kilometers and reasonable values of Vi because S=x /07
In such a range of ﬁ’ roots of equation (22) can be expressed
approximately with algebraic relations of £

First, only terms with 8~  are kept for the same

powers of A~ , since § <<| . Purther, 1f B/ , powers of

ﬂ’ higher than the first in the coefficients of !2 and w can be
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neglected. The left haud side of equation (22) can be written as

ww -1)[w?~ {1+20-08 Jw - (1+£)87r R']

’, o e (23)
~(HEENE"L + (rexy-1)87"E =g

If the last two terms of equation (23) are neglected, the first
approximation of four roots of (23) is given by:

W xOard W/ , (24a) (24b)
and .
~ L 4 L ¥ p° 17 (25a) (25b)
(U\'zi'(a.*(’*i)g‘&} ,

In relations (25a) and (25b), P -terms without a factor 5~/ are
neglected., The following second approximations for (24a) and (24b)
are determined from (22) to the order of R'‘ and -ﬁ’, respectively.

w~ -gR + L—-—-—r“'af AP M (26a)
w~ 1+ 1+ G2y xR (26b)

The term of ﬁ’z in (26a) becomes important when £=¢0 . The
roots (26a) and (26b) yield respectively following phase velocities:

C = %W = 7, + .LL‘J.YIEQW&/ (27a)

(27v)

(= V, + (—E’- + I}—z—(wi)V,)
The depression § , Of the interface corresponding to (263)
(26b) arc respectively given by

A - L
S 2 ) g (28a)
2 X ——31-7% 5, (28b)
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8ince equations (28a) and (28b) indicate that displacements of the
interface are much larger than and reserve in direction to those of
the free surface, the waves corresponding to roots (26a) and (26b) are
interpreted as the baroclinic mode. The frequency corresponding to
(26a) 1is very small and the mass - transports which are obtained by
substituting (26a) into (4) and (ib are quasigeostrophic or geostrophic
to the order of magnitude of ii’ . Since the frequency for the root
(26b) almost equals to that of inertial oscillations, waves corres-
ponding to this root may be called inertiogravitational waves. The
phase velocity (27a) of quasigeostrophic waves shows that the waves
are carried by the current of the lower layer. When V2- 0, they
propagate to the positive y-direction. When kao, they may propagate
to the negative y-direction for smaller A but to the positive
y-direction for larger £/ in a range of 8 satisfying ﬁ’«/ . The
value of ﬁ’ at which such change in propagation direction occurs is
given by §7(y-11£*)7 which lies in the range of £/ considered if £
is sufficiently small., Inertiogravitational waves are carried by
the current of the upper layer, as seen from equation (27a).

Dynamical properties of the waves corresponding to (25)
may be understood when we consider a range of R satisfying A%< Sty

. Under this condition, the roots (25) can be

expressed by

< /
W= -tk (290)

wr 1+ YR (29b)

The displacement of the interface corresponding to (29a) and (29b)
is given by:

52 = 1{}"‘ 5) (30)
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which indicates that the waves are of barotropic mode., The same
argument as for the waves corresponding to (26a) and (26b) can be
applied to the waves of barotropic mode and waves for (29a) or (29b)
may be defined as quasi-geostrophic or inertiogravitational waves,
respectively.

When §11+€ 17 Y ¥ & R/ << V67||, equation (22)
can be approximately separated into two quadratic equations:

-2 f1+ (-0 tw —(c+£)g_£_’=0 (31)
Yok §2(¥-1-)R*+ Y tw +§-@-EDHR T+ YR =0 32

The roots of (32) represent the waves with high frequencies which
bacome waves of barotropic moda corresponding to the roots (29a) and
(29b) as ﬁ,’decreasea to the order less than & . The waves corres-
pcending to the roots of equation (3'/’) have lower frequencies than
those for (32). They become waves of baroclinic mode corresponding
to the roots (28a) and (28b) as ;@, decreases.

The four roots of (22) for a range of 7@. from 10
are numerically computed by taking following constants,

4t:o 10

V=5, =0, 05, /am/°°,5=/0‘3 (33)

The curves of w ere plotted against in fig. 2a, b. The values 0
and oo of £ corresponds to the cases of no current in the lower and
upper layer, respectively. Since )@’ vanishes for &=eo, )Q,ia replaced
ty R”(=£Tif”) in fig. 2b. It is seen that general features of
four curves cof ¥ are very similar for different values of £ except
those of quasigeostrophic waves of baroclinic mode. Since the prom-
inent terms in most approximate formulas for w include (/+£)£ d

as a combination, the curves of w are almost the same for negative
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values of (7€) as for positive values ‘e [ ;@’/ is taken as an argument.

In fig. 3 the ratio |4, /&, | for four differemnt roots of
the biquadratic equation in (16) are plotted against B’ for a case
of $=0 . These ratios are almost unchanged in a range of
considered. Althodgh explicit formulas of &: indicating separation
of barotropic and baroclinic modes such as (28) and (30) are derived
only for a certain range of A’ » such separation is almost complete
in the whole range of ﬁ/. There seems to be no important interaction
between barotropic and baroclinic modes.

Since the waves of barotropic mode are similar to those
treated by Reid (1958), the appraximate formulas of the roots of
this mode can be compared with his results. From the definition of

&, R, Yand § , we have

- (S, +5,)
(e) Y57 R = G R (36)
17 we put S =5,+S, sthe roots expressed by (25) become the same

as those of equations (35) and (36) in Reid's (1958) paper. (Mote
that his notation w is equivalent to -¢ or-fw in our notation.)
As i'or -ﬂ_ increases, these roots can be approximately expressed by
roots of equation (31), which are equivalent to those of equation
(40) in Reid's paper.

Since (/-rE);é/ is positive from relation (34) and ¥ >{
from the definition, the approximate formulas (23), (31) and (33)
always yield real values of w. This situation indicates that the
waves for n = 0 are stable for a range of wave numbers satisfying
the condition that 0o ¢ )Q &K&fYV . This range includes waves
whose wave lengths range from thousands to several kilometers, for
ordinary magnitudes of & (~ 10'3) and V, (~ //m/8). Such per-
sistence of stability in the range of wave lengths is different from
occurrence of long unstable waves which are predicted in a mathema-
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Fig. 2a,--Relative frequencies Wyg =‘W/§— versus
R'= VR forg =0, 0,5 and 1,
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Fig. 2b.--Relative frequencies Wot=%1(R)/5 versusf's v;%
for $=aa .
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tical model. of cyclones as waves on an inclined boundary of two air
masses in the atmosphere (Godske and others, 1957)., This difference
night certainly be due to the kinematic constraints imposed by the
bottom configuration, the free surface, and the coast in the present
model, though a real reason must be yet to be found in more elaborate

study. (Sese Appendix A)
12
) t % ‘5'1\

/1 VEY]

L - o m ——— N
F £=2
ol f AL

- - ——fre e -

. odn
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7304 rec-?

Fig. 3.-- |§z/;" ' versus ﬁ’=v—f§&- forn=0and =0

1073 707 7
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4. The wvaves for N 2 1

When A  1s much smaller than & (27+1)”/ , equation
(15b) yields approximate relations for <« . Approximation for
three roots in a low frequency range is obtained by equating to zero
respectively the linear and quadratic part sbout <O in equation
(15b), in which only the zeroth, first and second powers of / are
retained respectively in the coefficient of the second, first and

geroth power of W 1in the polynomial shown in Table 1. These roots
are:

W~ -k + (2] G-g2Xa-N¥ + g} R* (350)

wr~ T LY eyt Y IR (330)

As the roots (26a) and (26) for N = 0, these roots
represent motion of baroclinic mode which is characterized by the
valuas of %z proportional to s &, . Substitution of (35a) and (35b)
into (4) and (5) as well as the magnitude of charccteristic fre-
quencies confirm that the roots (35a) and (35b) correspond res-
pectively to quasigeostrophic ( { = 6) and inertio-gravitational
waves ( / = 4 and 5), where { denotes the mode of waves for different
roots of (15b) with { = 1 to 3 and 4 to 6 corresponding to barotropic
and baroclinic mode, respectively.

The three roots of (15b) in a high frequency range is
determined from a cubic equation:

w?- 3(,_£)£'/‘02__ f /*(2”*/X,*£)6.If£/}q}
- 3’-(/rz)mf=o

1f the term of wW?1is neglected, this equation becomes the same as

equation (30) in the paper of Reid (1958) by putting S = S,+S2 .
7/

(36)
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Thercfore, these roots correspond to the motion of barotropic mode.
The approximate formulas for three roota cf (36) can ba written as:

W~ - SIHaYYR’ (37e)

wr 1 LY & {1 IR (37b)

with the condition ﬁ,’« S§ . The same argument as applied to the
roots (35a) and (35b) indicates that the roots (37a) and (37b) cor-
reepond to quasigeostrophic ( ¢ = 3) and inertiogravitational waves
( A= 1 and 2), respectively,
In a range of satisfying the condition that
8C27141)7< R <K §(271+1) equation (15b) can be separated

into a quadratic and biquadratic equation of «w . The quadratic
evuation is

Wi (2 xe)S YR >0 . (38a)

If S is substituted for S,+S, and £ is used instead of )QI, this
equation becomas:
w— (@mngsk > 0 (38b)
Therefore tha roots of (38b) represent the gravitational waves of
barotropic (/=1 andz ) similar to Stokes' edge waves.,
The biquadratic equation of (J is obtained by equating
to zero the sum of all the terms with a factor ¢~ in Table 1. 1If

Snri)l K R/ <« (an+ 1) this equation has the
following four roots:
W ~ (2721+1) TU-E NV~ YW'-¢ }ﬁn" eR’ (39a)
w~ T+ O(&) (39b)

’ 39
w’\'-z:m *O(ﬁ) ‘ (%)
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The roots given by (39a) and (39b) correspond respectively
to (35a) and (35b) and represent quasigeostrophic ( £ = 6) and iner=
tiogravitational ({ =4 and 5) waves of baroclinic mode., The root
(39¢c) represents quasigeostrophic waves of barotropic mode (I = 3)
for -k > fiCan+1)7(35)7 in Reid's (1958) paper.

As ﬁ'approaches to and exceed (an+i) » roots of the
biquadratic equation are no more adequately expressed by approximate
formulas (392) to (39¢). The formulas for such roots cannot be
determined as simple algebraic relations of £ .

In figure 4, the curves of six roots of equation (15b) with
n = 1 are plotted for ﬁ’ . A range of £’ and constants § and ¥
are the same as for the curves of figure 2 of n = 0. The curves of
roots of barotropic mode have features similar to those of Reid's
(1958) paper, indicating that there is little interaction between
barotropic and baroclinic modes in a range of R’ considered. Also,
nunerical calculation as well as approximate formulas for «w indicate
that the roots of equation (15b) are real for m 2| and the waves
are stuble in this range of £’. .
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Fig. 4.--Relative frequencies Wy = Wl(w)/ £ versus

p/= iR/ % for £ = 0,
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S. Group velocity.
The growp velocity (., (ﬁ ) of the waves corres-

ponding to the root y gn (R) of equation (15b) is given by
_dU a{ <% 74 (40)
/ = |7
G (N ] ( ﬁ E / &/

in which 0y is the frequency corresponding to (Up s, and the
suffices { (= 1 to 6) and n (=0,1,2...) are the mode and the order
of the waves. If [(w, ﬂ’) represents the frequency equation whose
coefficients of powers of (0 are listed in Table 1, the group
velocity (40) is expressed by:

O BV 3 S

General features of group velocity of waves of different
modes may be seen from the slope of the curve of (@), (D> plotted
against 'k as well as approximate formulas for (Yrsy (R’) .,

Trends of roots Woy (R')  of barotropic mode as functioms of

A7 are almost similar to those discussed by Reid (1958) in a
range of 'ﬁ considered in this study. Thus, the group velocities
of: the barotropic modes have similar features to those of his theory.

' In order to discuss the group velocities of baroclinic
mo:;de for n = 0, approximate formulas of w are determined from
equation (32) for two ranges of -&/ . Inarange (> R>>S§ ,
roots of (32) are given by

wx -gR + -3 r2e) -2 YR (420)

w=a |+ 2-y"-Y"'s) R’ (42b)

e it s 2



20

-} ’
In a range 8 >>& Pd » these roots are expressed by:
wx (-FLEY MR+ 3 {3k + 4, (438) (43b)
where 91 = L0-¥)E-28 +) +E20- Y)Y}y

4, =(1=Y"cg -2y X297 .
The formula with minus or plus sign before the double sign is denoted
by (43a) or (43b), respectively. Approximate formulas of ¢V in the
quasigeostrophic waves of baroclinic mode are expressed by (26a) (42a)
and (43a) in respective ranges of R . Those of inertiogravita-
tional wave are given by (26a), (42b) and (43b).

The group velocity as well as the phase velocity for the
quasigeostrophic waves is smaller than corresponding velocities of
the inertiogravitational waves in a range of #’ considered as seen
from relations (26), (42) and (43). 1f £ is finite and of order of
magnitudes less than unity, the group velocity of the quasigeostrophic
waves is almost the same as the phase velocity which equals nearly to

V2 » velocity of the permanent flow in the lower layer in a
rarge 7 <& | . Therefore, with such a condition these
waves are almost non-dispersive., If £ a0 » in a range

ﬁ'«] the group velocity of quasigeostrophic waves are twice
the phase velocity which is the order of magnitude of R’ V,' .
In a range S7'5»R/> | , group velocity is almost the same as the
phase velocity for any values of E .

The group velocity of the inertiogravity waves equals
approximately to 2V in a range ﬁ '<<| , and
to 202 V, 1in a renge | << R« 8~ » 1f  f>>] and

§ << | . It is wmuch smaller in a range £ <« | than the
phase velocity which is nearly equal to Vi/R'(=5R™'). Therefore,
these waves are strongly dispersive in such a range of -k/ .
They become less dl spersive in a range (<< £’'<« 5 as in the
quasigeostrophic waves.
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Analogous discussions may be applied to the group velocity
of the waves of order higher than zeroth order. The group velocity
of the second inertiogravity waves corresponding to the root with the
lower sign of (35b) and (39b) is negative as the phase velocity
is » although the magnitude of the group
velocity is much smaller than the phase velocity in a range

£ <& /. In this range of £’ , therefore, these waves - are
highly dispersive as the first inertiogravitational waves for roots
with the upper sign of (35b) and (39b).
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6. Normal modes

Arbitrary waves in this systen can be expressed as & sum
of the waves of normal modes of £ = 1 to 6 for all order 7. from 0
to infinity, because orthogonal relationships among normal méde
functions are valid as proved in Appendix B. In order to discuss the
waves gencrated by an initial mound of the free surface or by wind
stresses or atmospheric pressure, the initial surface elevation or
forcing functions of wind stresses or atmospheric pressure must be
expressed by a sum of normal mode functions.

The orthongonal conditions for the present system are
expressed as follows (see Appendix B for derivatiom):

o0 ¥
L [E‘égg'iﬁ'l.,dﬂzinN.,nN:,r{ + %?""!5:‘? N
+ "?LFE_MJ.MM:.?* N, N:"P% + ébﬁ g: n.§1t N

+ B @R'sy (“""”"‘" w263 ) ~ §(Tap t Cug Tt +023) + € é}u
Trne Op (60250 X 5= ) S

in which Mi ng ) and § g Genote the normal
functions of mass transport in x- and y- direction and displacement
(downwards) of the upper face, respectively; the suffices 1 and 2
for 3 indicate respectively the upper and lower layer, the suffices
N and M (1 to 6) and £ and P (all positive integers) represent
respectively the mode and the order of the normal mode functions and
the asterisk denotes the conjugate complex, In this equation, the
first and the second three terms in the integral sign represent the
sum of kinetic and potential energy of the flow in the upper and

(44)

lower layer, respectively and tle last term represent the effect of
interaction of the upper and lower layer.

, The quantities ( "'(f’ )  can be computed by substituting
the normal mode functions for 7= » and ¢=p into the left hand side
of equation (44). However, the values of ( "['ﬂ’) can be estimated
without resorting to a complicated calculation. As discussed in
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Sections 3 and 4, the normal mode functions are almost completely
separated into barotropic and baroclinic mode in a range of ﬁ’ much
less than uninity or in a range of wave lengths from several to
several thousands kilometers. Therefore, for the barotropic mode,

the normal functions of the lower layer M, , A, and can be
expressed approximately by Gz
Z >
M, ~ f'”t N ~ ﬁzM and ~ %l . (45a)

In this case the mass transports in the whole depth become
P[:M,fM,=£L£_ﬁM‘ N;’N:i’NZ:ﬁ‘-_—gtﬁjNg (45b)
I / '

Substitution of (45a) into the left hand side of (44) leads to:

”9 Y‘IW -ro\,ﬂN.,no") *(;:,ne\‘]dz (46)
e Waols INuel®) +155, of Jax

The integral equals to the norm of the set of eigenfunctions (or
normal mode functions) for a homogeneous water with the depth of
'ﬁ»*’ﬁz and is determined by Reid (1958) as his equation (64). (He
used a notation N!,g(-p) instead of ("' )
The normal functions of the lower layer for baroclinic
mode are also given approximately by:
Mo~ &M, N2~ SNy aud ;l«. —-a'f g,
(47)

Substitution of (47) into the left hand side of (44) yields:

"0 g“’[ 7 UM NGl +18, Lol £12, 00! }"" (48)
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The integral of the firast three terms of the right hand side is the
same as the norm of the normal functions for the upper layer only
as treated by Reid (1958). The integral of the last term equals
to (288)" .

As in case of a homogeneous water, the quantity :

Pon(B) = (2% C*(B)]™ (49)
indicates the weight function of partitioning of the emergy spectrum
among the six discrete modes ( § = 1 to 6). This function also
satisfies the condition that:

’

The weight functioms “for baroclinic mode are almost the same as those
determined by Reid (1958) for a homogeneous water with the

depthf, The approximate formula (48) shows that (" > (2pS)* .
Therefore, for the baroclinic mode, we have

Fnﬂ § 8 (51)

This relation indicates that energy spectrum of an initial surface
displacement or of forcing functions is distributed for the most
part among three barotropic modes, because the weight functions for
baroclinic mode are less than § . Therefore, there is no - favor-
able condition for exciting internal waves in a range of wave lengths
of geveral thousands kilometers.
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7. Concluding remarks

Mathematical treatment of edge waves in a two-layered
rotating sea reveals to us two main features which may be important
to the application of the theory. One is that no instability occurs
to this system in a range of wave lengths of several to thousands ’
kilometers. In a non-rotating system, shearing motion in a vertie
cally stratified layer becomes unstable in a certain range of wave.
lengths as in Helmholz waves. FEven in a rotating system, a mathe-
matical model of cyclone waves and a simplified theory of meander of
a wide ocean current predict that instability occurs in a two-layered
system of geostrophic currents. Therefore, in this model there is
no favorable range of wave lengths for which some disturbances may
excite large internal waves.

Another feature is that energy of an initially static mound
of water and of disturbing forces due to atmospheric pressure or
wind stresses is distributed for the most part among three baro-
tropic modes. This again indicates that internal waves are not
favorably excited by such disturbances with an order of dimension
corresponding to a range of wave lengths considered. This is in
accordance with a general theory developed by Veronis and Stommel
(1958), who concluded that the ocean responds to variable winds
principally as a homogeneous body of water and for periods shorter
than several weeks. Therefore, possibility of favorable excitation
of internal waves in this system may be found outside a range of
wave lengths discussed here. In a range of shorter wave lengths,
however, the effect of Coriolis' force is negligible. In a range
of longer wave lengths, the effect of change of Coriolis' coefficient
may become important. In either range the present model is not
adequate,

Acknowledgement: Typing of the manuscript by Mrs., Suzy Bowman is
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Appendix A

Stommel (1953, 1958) discussed a perturbation problem for
a wide, geostrophic current V,in the upper layer of two-layered
ocean, He obtained a result that there is a narrow range of wave
numbers about /é =f/7 V., 1in which waves are unstable, in contrary
to the present work, Although he assumed that the pirturbation is
uniform in x - direction (cross current direction), his model may
be considered as amodified use of the present theory.

It is assumed that the uniform geostrophic current flows
in the wedgeshaped upper layer, below which the motionless lower
layer extends infinitely downwards, (See the attached figure) The
z x coordinate system is taken as the

— * gsame as in the text, but no coastal
W f=s2 boundary is needed in this problem
Equations of motion and continuity
for the upper layer a¥e the same as (1) and (2) of the text. The
assuiption of no motion in the lower layer leads to:

g, =-5873, . (A1)
Substituting (4) and (5) into (2) and using (Al), we have :
dp d8 C4RS o 18 A =

dl(‘?& H)-( P *&‘R*’ja '}é 0

(a2)
inwhich 07 =0-RV , A =4$%-q2 and the suffix 1
for S, f, % and VY is omitted.

Assuning that & 1is independent on x and that £ in the
coefficient of 5 in equation (A2) is constant, Stommel (1954,
1958) derived a cubic equation of ¢~ by equating the coefficient
of '; to zero. Haweveg, if ﬁ. is taken as s X throughout the
whole space, equation (A®) can be written as:

d /4% R $U-w?) 2 =0
| SE)- TR - HED S (a3)
inwhicth W, = (= RVY/S tud V = $8S/§ © uard.



The normal mods of & which is finite at x = 0 and oo corx-
responds to (v, satisfying

fw + §(~w)V = - (2ne IR (A%)
This equation can be transformed into
w,- {4 1jw, - =0 “3)
where ‘= &V/$7 as defined in the text.
By taking ¢, = — (R72)° W » (AS) is changed into:
w3+ 2 =PwW (A6)

-2/3 ,
where P = (2/f) {Gn+R i } (A7)
vhen P<3 , there are complex roots of (A6). However, as easily
seen, P23 for all positive -2’ . (The equality occurs for
k'=2 and n = 0), Therefore, in the present model there is no.
range of ﬁ.’ in which waves are unstable,

When there is a geostrophic current in the lower layer as
in the model of the text, ‘ﬁ.’ in equation (A5) should be changed into

(1€)£7 , inwhich § = -V3/y, . Since (H &R’ is always
positive as discussed in the text, the same reasoning as above is
valid and the waves are always stable.

It is noted that equation (A5) is reduced to the frequency
equation (30) of Reid's paper (1958), when «J and 'B._’ are replaced
by —-«/¢ and 835'3.-5 -! , respectively, Therefore, mathematical
features of the roots of (A5) are the same as those of the barotropic
mode discussed by him., Discussions on phase velocity and group
velocity for each of the three barotropic modes are also applicable
to the baroclinic mode, when the velocities are :I.nterptet‘e‘d as those
referred to the coordinates moving with the flow in the upper layer
and the wave number # for the barotropic mode is replaced by Stnsl'R,



Appendix B

Equations (1) and (2) yilelds the equations of motion and continuity
for a mode { and order 7 such as

=4 G7nt My, ne —{M-,,.,:gﬁ;%;/"-"" LI (31)
F it nt e iR g R Tyt s, O
4 M;np (83)

+ihN:p =0 ‘
/7 ﬁl\/,.ro —Jq;nl?-,,,(, d= /, 2

I1f n and 1 are replaced by m and p, respectively and all
quantities are changed into their complex conjugate, the following
equations are obtained:

¥
. X " ;
4 OIT"'P "‘7}7.; - " N’*nf = gﬁl %1’ ’ 1= ! d 2 (u)
9% . ¥ . BS
fdM;-Nr +4 Gomp Niop = kekitwr =1, 2 ( :
Miot _ RN = e b - (86
7#—— - lﬁN/.MP - -‘lajh.ﬁ?%"P l= ,' 2

whare the asterisk denotes the complex conjugate.
If equations (Bl), (B2), (B3), (B4), (B5) and (B6) are

* .
multiplied respectively by M/"’" /?' Y 25 , /\/) :"P /P, p 3‘7, »f'ﬁ '3 Ming é& j{’

N‘"”/F} ngl- and &/f; C 5 and all the resultants are
sumned up both for j = 1 and 2, the followhg equation is obtained

; .3 * * . (
l‘%-ﬂ;o)[nﬂ’&lmumo NWP +ND,);ON!l..,>} > %:. 0O mp #Eﬁ’{f’l,my%:p +
+ o AP B (v-v)Re s 2T mplragt T ) ¢ £ 3 _

Nains Nowp 3 + Fa Sane c’-"r s W Grma °an(§’-0.'.':.1+‘-07.-$){"'5'" @n
-'&(“’V)B- 'S(W:P Hﬂ‘roj,,fw;i) ....L.d_< * * . ) »

R o Trp (265 XF00 t 62| ;'-"PM""*K.J"o,..ﬁ'fwﬂmc*’ (x.wM»é
in which equation (14) is used,

When this equation is integrated from 0 tooo with respect

to x, the right hand side of the relation vanishes because of
boundary conditions at x = 0 and at x = 00 ., Therefore, the

expression in brackets of the left hand side of (B7) must vanish




t kG

oxcept formenand p =1,
??ﬂ {Mmtﬂ..p *N nlep&*-%;,.,g 'P +

t ?’aﬁ,{'n"“ Mawp +Nan N"""" M ‘ é’"vé

+ fl(\/, Vi \ﬁ 5.9 (2009 007 mp (Tmp + o) - 5("39 +RrmpTung +07.8) v 3 4‘
Tng np(f -G',tX{’—O",P)

= Nam ocfand L+ P
(C"o(@ R¥m  and QU=p,

The quantity C"Q(g)can be calculated by using the following rela-
tions and equations (4), (5) and (14).

(7+1) ';mm = (an ‘257)3,7: tn g:,‘n-t =0

Sim = S tR(3,, +3,) =0
x5, = N(S. -3 ,,_')“Pel’g.m

(B9)

z = LRt | ap ) (B10)

m
o

! =
(}(;'" p,mzzg/zg- " "
"¢ - " EMN

The result is:

" zz'éL(/?jlgmm XgR(Tars?) tetsgh %a} + %_/é}. +
! ,:‘(2”")0-"” -(-{S)ﬁﬁ
91\0(* )’ ( 11)
Af[& §(;ﬂﬂ)q~0 ,_f}ssﬁ_ 298,V V’)ﬁ’g,ﬂilﬂﬂﬂﬂ'u} -390 *{-3‘;
2k Top (£ 07 ) J G (f=-aA)2

-2~
+! ‘ f(;mu)?,gk(ﬂ;‘_,fa +57) 2 &5‘-3 20:,,.0 } +




References

Eckart, Carl.,

1951, Surface waves on water of variable depth. SIO Wave
Report No. 100 Ref. 51-12, 99 pp.

1960. Hygrodynamica of Oceans and Atmosphere. Pergamon Press,
290 pp.

Godske, C. L., T. Bergeron, J. Bjerknes, R. C., Bundgaard.
1957. Dynamic meteorology and weather forecasting, American
Meteorological Society, 800 pp.

Greenspane, H, P,

1956. The generation of Edge waves by moving pressure distri-
bution. J. Fluid Mech., 1l: 574-592,

Ichiye, Takashi.

1963. Internal waves over a continental shelf, Florida State
University Tech. Rep. No. 3, 21 pp.

n
Kajura, Ki jiro.
1958, Effect of Free and Forced Waves, J. Mar. Res., 16:145-157,

Kelvin, Lord,

1879. On gravitational oscillations of rotating water, Proc.
Roy. Soc. Edinb, 10, 92,

Reid, R. O.
1958, Effect of Coriolis force on edge-waves (I) Investigation
of the normal modes. J. Mar. Res., 16:109-144,
stOkes ] G. GO
1946, Mathematical and physical papers, 1, Cambridge Univer. Press
PP. 167-168,
Stmel’ Henryo

1953. Examples of the possible role of inertia and stratification

in the dynamics of the Gulf Stream System, J. Mar. Res.,
12:184-195.

1958. The Gulf Stream - a physical and dynamical description,
University of California Press, 202 pp.

[2]



Ursell, F.
1952. Edge waves on a sloping beach, Proc. Roy. Soc., (A)
214:79-97,

G. Veronis and H, Stommel.
1956. The action of variable wind stresses on a stratified
ocean, J. Mar, Res. 15:43-75,




